
REPRESENTING EXPRESSIVE TYPES IN
BLOCKS PROGRAMMING LANGUAGES

Marie Vasek, Wellesley College
NEPLS
June 1, 2012

1

Problem: Current block languages aim to lower barriers to
programming but only make weak attempts to implement static
types and do not represent tree-structured types.

Solution: Create a blocks language where the shape of the block
connector reflects the tree structure of a type.

REPRESENTING TYPES FROM FUNCTIONAL
LANGUAGES IN BLOCKS LANGUAGES

2

Overview:
¢ Type systems in other blocks languages
¢ TypeBlocks:

�  Shape types
�  Polymorphism
�  Work in progress: functions, algebraic data types

APP INVENTOR – DYNAMIC-ISH TYPING

3

¢ All types have the same connector shape
¢ Most type checking at run time, but some at connection

time

TIMING OF ERRORS

4

SCRATCH – WONKY TYPING

5

¢ Three primitive types (boolean, string, number)
¢ Three shapes (angle = boolean, rounded = string or number,

box = any)

TYPE CONVERSION

6
Evaluate to true

Evaluates to false

TYPE CONVERSION - LISTS

7

BYOB – MORE WONKINESS

8

STARLOGO: TNG

9

6 types:

POLYMORPHISM

10

BUGGY PROCEDURE TYPING

11

WHAT I DID

12

¢ Blocks types inspired by SML
¢ Base types + type constructors

=> ability to represent countably many types
¢ Each arbitrarily complex type = unique connector shape
¢ ML- style universal polymorphism
¢ … but no blocks language constructed from this yet

�  no functions or algebraic datatypes

BASE TYPES

13

3 base types: number, boolean, string!

BUILD-A-TYPE

14

3 constructors:

listof! pair! function!

listof int bool -> string listof (listof string) int * string

MORE EXAMPLE PLUGS

15

listof (string * boolean)! (listof string) * boolean!

boolean * (string -> listof number)!

POP QUIZ

16

17

ZIP AND MAP

TYPES TO SHAPES

¢ Recursive drawing method
¢ Draw:

�  Bottom of arrow
�  Range argument
�  Middle of the arrow
�  Domain argument
�  Top of the arrow

18

¢ Smallest type has size unit
¢  2 arguments: take the max

TYPE CONSTRUCTION IN PRACTICE

19

DEMONSTRATION

POLYMORPHISM
¢ On events connection and disconnection

20

On Connection:
¢ Unifies types of socket and plug
¢  If type of plug / socket changes:

�  Propogate change to all uses of that polymorphic type

On Disconnection:
¢  “Reset” type
¢ Propogate type changes to the parent / children

IMPLEMENTATION DETAILS

21

{“funD”: {“tupX”: “boolean”, “tupY”: “string”},!
 “funR”: {“listOf”: “number”}}!

¢ ScriptBlocks
¢  in JavaScript using Google Closure Library
¢ Represent recursive types by strings and objects

¢ Represent poly types by objects
�  Ie {“poly” : “a”} or {“poly”: “b”} where “a” and “b” are like

sml’s ‘a and ‘b.

WHAT SHOULD FUNCTIONS LOOK LIKE?

22

StarLogo: TNG BYOB

WHAT SHOULD ALGEBRAIC DATATYPES LOOK
LIKE?

23

And Or

FOR A LATER DATE

24

¢  A sml-like statically typed functional blocks language using
these types
�  differentiating visually between ‘a and ‘b.

¢  better visualization of polymorphic types
�  algebraic data types
�  pattern matching

¢  Usability
�  highlighting of all compatible connections
�  user testing

¢  Other languages and static semantics features
�  Object typing
�  Exception propagation
�  effects

¢  Other representations of type
�  Waterbear – types as color
�  any others???

25

WATERBEAR
¢  Inspired by Scratch
¢ Represents type through color
¢  4 basic types: boolean, number, string, array + “all” type
¢ Explicit casting to convert types

26

IDEAS FOR COMPOSABLE TYPES -
COLOR

27

