dLas

| W

REPRESENTING EXPRESSIVE TYPES IN
BLOCKS PROGRAMMING LANGUAGES

Marie Vasek, Wellesley College
NEPLS
June 1, 2012 (:-I:/\

REPRESENTING TYPES FROM FUNCTIONAL
LANGUAGES IN BLOCKS LANGUAGES

Problem: Current block languages aim to lower barriers to
programming but only make weak attempts to implement static
types and do not represent tree-structured types.

Solution: Create a blocks language where the shape of the block
connector reflects the tree structure of a type.

Overview:
Type systems 1n other blocks languages

TypeBlocks:
Shape types
Polymorphism

Work 1n progress: functions, algebraic data types

APP INVENTOR — DYNAMIC-ISH TYPING

def
A

XS

as c cal make a list |

item c false

item '

ifelse

else-do

test

Iq number 2

- C: “" length of list

list C global
|

XS ‘

p—

call

add items to list

li (J lobal
ist {. g axs

R ’]C number 1
|

+

‘ tex‘t2 |

item (J—
J

call

add items to list

Iistc global XS |
item text three

|
item (J
J

=

g

All types have the same connector shape

Most type checking at run time, but some at connection

time

TIMING OF ERRORS

A call Iog Cll number 12v|

C (text
¥ all Iog ,l ax helloV

8.NO.C Misplaced block

This block cannot plug into this socket because hello is not a number.

“ The Troubleshooting Guide at http://appinventor.googlelabs.com/learn/troubleshooting.htmi

may provide further help.

ca
Iog "lj numbear 10 join C; number 24V

Bad arguments to log

The operation log cannot
accept the arguments: hello24

» log "E text hello join C_‘ number 247

End Application

SCRATCH — WONKY TYPING

Three primitive types (boolean, string, number)

Three shapes (angle = boolean, rounded = string or number,
box = any)

csis fun!

TYPE CONVERSION

(&
5

L '
et X to H=0 F
ab .
‘ e

Evaluate to true

Evaluates to false

TYPE CONVERSION - LISTS

add to XS
add [to xs

add xs to V¥S

add "E(I=F] to xs

add [to ¥s m
g I ose D

‘item IR of xS = item BB of VS

Lt Iength: 2 Z\t Iength: 1

.+ lengthi1 ZI* lengthil 7

BYOB — MORE WONKINESS

report “not add 3 2

set X | to ~ true

(ae

“not X

Turtles
nums

STARLOGO: TNG [Srrems

>
-

length list® = bar

6 types: -

list -

set nums

£ 4
o

test y list >
SR Turtl
pickilistiitem S i < Voo
nums 3

then -’ —

sayj You Win!

You Lose!

You Losel

POLYMORPHISM

Turtles Turtles Turtles

Proci = Proc2 ¥ Proc3

— S

test y test Z
— S : — S
. output. £ g _ =5 output
ifelse ifelse -

then

'_—/_ Ise '_—/_._
output output yak

P — y »
Turtles . Turtles y Turtles
Proci Proc2 Proc3

BUGGY PROCEDURE TYPING

Turtles

Proc4

-
list ™ - XS

»
output add to list

item & * A5Firsts list . x5 .~ +

-~

Turtles

wTurtles

Proc5 Proc5

lists = yS ..

add to list — n—}
item !""' firstilists . ys = 5

-

true

:Turtles

—

list (false
Proch —~

WHAT I DID

Blocks types mspired by SML

Base types + type constructors
=> ability to represent countably many types

Each arbitrarily complex type = unique connector shape
ML- style universal polymorphism
... but no blocks language constructed from this yet

no functions or algebraic datatypes

BASE TYPES

3 base types: number, boolean, string

@< 1+b< @< [>b < (ot CfistofC

BUILD-A-TYPE

3 constructors:

listof

function

listof int

listof

(listof string)

int * string

bool -> string

MORE EXAMPLE PLUGS

listof (string * boolean) (listof string) * boolean

boolean * (string -> listof number)

POP QUIZ

ZIP AND MAP

TYPES TO SHAPES

Recursive drawing method

Draw:

Bottom of arrow
Range argument

i i Middle of the arrow
! i Domain argument

Top of the arrow

Smallest type has size unit
2 arguments: take the max

TYPE CONSTRUCTION IN PRACTICE

DEMONSTRATION

POLYMORPHISM

On events connection and disconnection

On Connection:
Unifies types of socket and plug

If type of plug / socket changes:
Propogate change to all uses of that polymorphic type

On Disconnection:
“Reset” type
Propogate type changes to the parent / children

IMPLEMENTATION DETAILS

ScriptBlocks
in JavaScript using Google Closure Library

Represent recursive types by strings and objects

jﬁv\

{”funD”: {“tupX”: “boolean”, “tup¥”: “string”},

{ / “funR”: {“listOf”: “number”}}

Represent poly types by objects

29 (1P

Ie {“poly” : “a”} or {*“poly”: “b”} where “a” and “b” are like
sml’s ‘a and ‘b.

WHAT SHOULD FUNCTIONS LOOK LIKE?

Turtles

Proc

report
StarLogo: TNG BYOB

Editable Label °®

WHAT SHOULD ALGEBRAIC DATATYPES LOOK
LIKE?

r - -

g\
ANy A ENE

And Or

FOR A LATER DATE

A sml-like statically typed functional blocks language using
these types

differentiating visually between ‘a and ‘b.

better visualization of polymorphic types
algebraic data types
pattern matching

Usability

highlighting of all compatible connections

user testing

Other languages and static semantics features
Object typing
Exception propagation
effects

Other representations of type

Waterbear — types as color
any others???

WATERBEAR

Inspired by Scratch
Represents type through color
4 basic types: boolean, number, string, array + “all” type

Explicit casting to convert types

4 [=4 [and‘truelti

4 [+ 3 [concatenate| tostring| 4 [+ 3 [with world

2 ([*2 [1+3 [

array newArray append array myArray reversed

IDEAS FOR COMPOSABLE TYPES -
COLOR

l any questions? l

' any questions? |

Iy QUEeSHONS e
any duves{lons? QXY

