
Identifying Risk Factors for Webserver Compromise

Marie Vasek and Tyler Moore

Computer Science and Engineering Department
Southern Methodist University, Dallas, TX

Email: {mvasek,tylerm}@smu.edu

Abstract. We describe a case-control study to identify risk factors that are asso-
ciated with higher rates of webserver compromise. We inspect a random sample
of around 200 000 webservers and automatically identify attributes hypothesized
to affect the susceptibility to compromise, notably content management system
(CMS) and webserver type. We then cross-list this information with data on web-
servers hacked to serve phishing pages or redirect to unlicensed online pharma-
cies. We find that webservers running WordPress and Joomla are more likely to
be hacked than those not running any CMS, and that servers running Apache and
Nginx are more likely to be hacked than those running Microsoft IIS. Further-
more, using a series of logistic regressions, we find that a CMS’s market share is
positively correlated with website compromise. Finally, we examine the link be-
tween webservers running outdated software and being compromised. Contrary
to conventional wisdom, we find that servers running outdated versions of Word-
Press (the most popular CMS platform) are less likely to be hacked than those
running more recent versions. We present evidence that this may be explained by
the low install base of outdated software.

Keywords: Content-management systems, webserver security, case-control
study, cybercrime, security economics

1 Introduction

Each month many thousands of websites are compromised by criminals and repurposed
to host phishing websites, distribute malware, and peddle counterfeit goods. Despite the
substantial harm imposed, the number of infected websites has remained stubbornly
high. While many agree that the current level of Internet security is unacceptably low,
there is no consensus on what countermeasures should be adopted to improve security
or where limited resources should be focused. One key reason we are in such a sorry
state is that measuring security outcomes (and what factors drive them) is hard. In part,
this is because those who fall victim to cybercrime often prefer not to speak out. But it
is also because security mechanisms are deployed in the wild, where it can be impos-
sible to design a randomized controlled experiment isolating the effect of a particular
countermeasure to evaluate effectiveness.

However, even when controlled experiments are not feasible, other techniques may
still be usefully applied. In this paper, we apply a widely-used method from epidemiol-
ogy, called a case-control study, in order to better understand the factors driving web-
server insecurity. Working backwards from data on security incidents and a control

2 Marie Vasek and Tyler Moore

sample, we can identify risk factors associated with compromise. This in turn can help
defenders better allocate scarce defensive resources to do the most good.

We investigate many observable characteristics of webservers that may affect the
likelihood of compromise. Chief among them is whether or not they run a content man-
agement system (CMS), an application that simplifies the creation of web content. Some
of the more popular CMSes, such as Joomla and WordPress, are consistently exploited
to give a miscreant control over the webserver. Additional characteristics include the
server type (e.g., Apache), the hosting country, and whether or not the webserver has
demonstrated savviness in secure administration practices.

We identify these characteristics in two compromised populations (webservers used
to host phishing pages and to engage in search-redirection attacks), as well as a con-
trol sample of non-infected webservers. Using the case-control method, we identify risk
factors by calculating odds ratios and constructing a series of logistic regressions. Key
findings include identifying which CMSes are at greater risk of compromise, demon-
strating that CMS popularity is correlated with available exploits and higher rates of
compromise, and presenting evidence that outdated WordPress installations are at lower
risk of compromise than more recent ones because outdated versions are less popular.

Notably, our analysis focuses on security outcomes, not security levels. For instance,
we do not claim that running outdated software makes a webserver less “hackable”.
Rather, by studying compromise data, we can report on what factors affect the likeli-
hood of actually being hacked. We hope that our results demonstrate to others measur-
ing cybercrime the value in employing case-control studies to evaluate outcomes.

The rest of the paper is organized as follows. Section 2 articulates our research ques-
tions and describes the data collection methodology. Section 3 presents our empirical
results, which we sum up in Section 4. We present related work in Section 5 and discuss
limitations, conclusions and opportunities for future work in Section 6.

2 Methodology

We begin by setting out the key research questions in Section 2.1, then outline the case-
control study design in Section 2.2. We discuss the data collection and classification
approach in Section 2.3. The collected data and analysis scripts are publicly available
for replication purposes at doi:10.7910/DVN/25608. The methodology is a key
contribution of the paper, since applying case-control studies to cybersecurity is new,
and, we believe, a promising way to measure security in many other contexts.

2.1 Research Questions

We investigate three categories of research questions about factors that may influence
webserver compromise: software type, software market share, and webserver hygiene.

Most generally, we hypothesize that there are measurable differences in compro-
mise rates according to the type of software run on webservers.

H0: Running a CMS is a positive risk factor1 for compromise.
1 In this paper, a positive risk factor is actually a bad thing, as it indicates greater odds of com-

promise. By contrast, a negative risk factor indicates lower odds of compromise.

Identifying Risk Factors for Webserver Compromise 3

H0b: (corollary) Some CMS types are risk factors for compromise.
H1: Some server types are risk factors for compromise.

There are several reasons why servers running CMSes may be compromised more
often. First, CMSes simplify configuration by reducing technical barriers, which means
that they are often administered by non-experts. This could lead to a greater chance for
server misconfiguration. Second, CMS platforms are a form of software monoculture,
exhibiting common vulnerabilities in both the underlying code and the default configu-
rations. We also expect some CMS platforms to be more secure than others.

We also anticipate that there will be differences in compromise rates based on the
type of server software used. This is because there are different amounts of exploitable
vulnerabilities present in the underlying code bases. Additionally, some applications
(including CMSes) run only or primarily on particular server types, and each application
has its own susceptibility to compromise.

Furthermore, we suspect that a key driving force behind the variation in compro-
mise rates across software types is the software’s market share. When more webservers
run a particular type of software, they collectively become a more attractive target for
miscreants. The cost of crafting new exploits can be amortized over many more infec-
tions for more popular software. While many would agree with such logic on software
types, we hypothesize that the same logic also applies to different versions of the same
software: more popular software versions tend to be targeted more often than less pop-
ular ones. We suspect this is true even when the less popular version is more outdated
and has more vulnerabilities.

H2: CMS market share is a positive risk factor for webserver compromise.
H2b: (corollary) Outdated software with limited market penetration is a negative risk

factor for compromise.
H2c: (corollary) The number of exploits available for a type of software is a positive risk

factor for compromise.

Our final group of hypotheses involve the individual security practices of webserver
administrators. We believe that, independent of the software running on a webserver,
adopting security best practices that improve server “hygiene” can influence the likeli-
hood of compromise.

H3: Actively hiding detailed software version information is a negative risk factor for
compromise.

H4: Running a webserver on a shared hosting platform is a positive risk factor for com-
promise.

H5: Setting the HTTPONLY cookie, which protects against cross-site scripting attacks,
is a negative risk factor for compromise.

We note that there are other reasons why a webserver could be put at greater risk of
being hacked than just the factors discussed above. For example, administrator compe-
tence (not captured by the hygiene indicators) certainly plays a role. Security policies
also matter: lax password policies or practices could lead to compromise. Finally, the
value of the target influences what gets hacked: high-reputation websites, for instance,
are targeted for compromise more frequently in search-redirection attacks [1].

4 Marie Vasek and Tyler Moore

Population: .com
domains

Case: Phishing
dataset

Control: Webserver
dataset

Exposed: CMS
Type

Not Exposed: No
CMS

Exposed: CMS
Type

Not Exposed: No
CMS

(a) Case-control study design, demonstrated for phishing
dataset and CMS type as risk factor.

.COM
90 million

Phish
15 961

12 682
Webserver

Dataset
210 496

(b) Venn diagram demonstrates how
we join webserver and phishing
datasets.

Fig. 1: We join the webserver and compromise datasets to compare risk factors with
outcomes.

We have chosen not to examine the impact of these additional factors in the present
study. We decided to focus on CMSes, server software, and webserver hygiene indica-
tors for three reasons. First, as explained above, there is substantial evidence that these
factors strongly affect compromise rates (e.g., the large number of exploits available
that target CMSes). Second, we have restricted ourselves to factors that could manage-
ably be observed directly and in an automated fashion. By contrast, many of the factors
that we chose not to study are not not directly observable, such as a company’s pass-
word policy. Factors that require extensively crawling or fuzzing a domain to observe,
such as inferring firewall policies, are also excluded because they cannot be carried out
at sufficient scale. Third, we have restricted ourselves to factors that appear in our sam-
ple population with sufficient frequency. In particular, we investigated many of the risk
factors from [2] and found the vast majority of them to occur too infrequently to include
in our study. It is our view that the methods of analysis presented here could in fact be
applied to additional factors, but we defer the task to future work.

2.2 Case-Control Study Design

In a case-control study typically used in epidemiology, data on those afflicted with a dis-
ease are compared against as similar a population as possible of those not afflicted [3].
For example, in the seminal case-control study that uncovered the link between smoking
and lung cancer, Doll and Arthur surveyed British doctors about their smoking habits,
then compared it against data collected subsequently on doctors’ mortality rates [4].
They found that doctors who smoked were much more likely to die than doctors who
did not. In general, case-control studies work by comparing two populations, one with
a condition (the ‘case’) to one without who are otherwise similar (the ‘control’). Re-
searchers can then work backwards to identify important risk factors by comparing the
relative incidence of different characteristics in the case and control populations.

Similarly, we sample a population of webservers and compare them to other popula-
tions of webservers that have been compromised. Figure 1a demonstrates the design for

Identifying Risk Factors for Webserver Compromise 5

the phishing dataset. We start with a comparable webserver population – domains regis-
tered in .com. We then assign the .com domains from the phishing dataset as the case
and the domains from the webserver dataset as the control. We can then treat character-
istics such as CMS type, server type and hosting country as potential risk factors. (We
explain how each of these datasets and risk factors are collected in the next subsection
below.) Figure 1b shows a Venn diagram that explains how the phishing and webserver
datasets are joined. A similar approach is used for the search-redirection attacks dataset
and the webserver dataset.

Note that with case-control data, we do not make any claims about the overall in-
cidence of compromise in the population. This is because we compare two different
samples (the compromised and broader samples). Instead, we analyze the prevalence of
compromise relative to the occurrence of risk factors such as CMS type.

2.3 Data Collection Overview

Control Population: Webserver Sample To answer our research questions, we need
a random sample of webservers; however, obtaining a perfectly representative sample
of all webservers is not possible since there is no global list available from which to
sample. According to Verisign, there are over 252 million registered domains [5], but
most zone files listing domains are not made public. Instead, we take a random sample
of domains listed in the .com zone file. While limited to a single TLD, it is worth
noting that .com comprises nearly half of all registered domains, and it is used by
websites in many countries. Furthermore, .com domains include websites from a wide
range of popularities. Thus, we feel that sampling from .com is broad enough to be
representative of all webservers online.

We sampled webservers over a period of 9 days, obtaining information on 210 496
domains selected at random from the .com zone file downloaded January 15, 2013. We
chose this sample size to ensure that it would likely include enough websites running
CMSes with at least 1% market share. This, in turn, improves the chances of obtaining
statistically significant results.

We remove all free hosting and URL shortening services (where the URLs are likely
set up purposely by the criminals) from our collection. Finally, we refer to the trimmed
sample of .com domains as the webserver dataset.

Case Populations: Compromised Webservers We consider two sources of data on
webserver compromise. First, we examine an amalgamated “feed” of phishing URLs,
comprising real-time reports from two firms that remove phishing websites on behalf
of banks, a large brand owner, the crowdsourced list from PhishTank [6], and the Anti-
Phishing Working Group’s community feed [7]. We examined 97 788 distinct URLs
from 29 682 domains impersonating 1 098 different brands reported between November
20, 2012 and January 7, 2013 in the phishing dataset. According to [8], 94% of domains
used for phishing during this period were compromised websites. Nearly all of the
remainder are highly-ranked sites that we excluded as described below.

The second dataset on webserver compromise came from websites observed to be
engaging in search-redirection attacks. Here, websites with high reputation are hacked

6 Marie Vasek and Tyler Moore

and reconfigured to surreptitiously channel traffic from search engines to unlicensed
pharmacies. We obtained the dataset gathered by the authors of [1], who updated their
system to detect advanced forms of cookie-based redirection as described in [9]. The
dataset includes web search results from 218 pharmaceutical-related search terms. Web-
servers are included in the list if they are observed to redirect to a third-party website
and subsequently found to engage in cloaking. The search-redirection attacks dataset
includes 58 516 distinct URLs gathered between October 20, 2011 and December 27,
2012. These correspond to 10 677 unique domains, 6 226 of which have a .com TLD.

Extracting Webserver Risk Factors The head of an HTML webpage often contains
metadata about the webpage in so-called meta tags. One piece of information that
many content management system (CMS) authors (and text editors) include is a
“generator” tag. This optional tag generally contains the text editor type, content
management system, version number and/or any special CMS themes used. For
example, a website running WordPress version 3.2.1 might contain the tag <meta
name=‘‘generator’’ content=‘‘WordPress 3.2.1’’>. We down-
loaded a copy of the HTML for the top-level webpage on a given domain, and then
parsed the HTML to extract the tag.

We then attempted to identify the CMS, if any, along with the version information
if included. We used manually crafted regular expressions to complete the task. We
focused on the top 13 CMSes with at least 1.0% of CMS market share as of January
2013 according to W3Techs [10]. These 13 CMSes collectively comprise 88.4% of all
websites using CMSes. We could identify CMS type for 9 of the top 13 (84.6% of all
CMSes). We also included 3 more CMSes, each with less than 1.0% of market share.

However, we cannot solely rely on generator tags to classify websites by CMS.
For instance, most websites running Drupal, one of the most popular CMSes, do not
display generator information in their metadata. Consequently, in addition to gathering
generator information, we ran a number of regular expressions corresponding to 3 of the
4 most popular CMSes against the dataset. Appendix A compares our custom approach
to several off-the shelf tools for CMS identification.

To identify server software, we collected the packet headers along with the
HTML code. In each header was a line specifying the server such as Server:
Microsoft-IIS/7.5. From this we extracted the server type and version number.
We also fetched the IP address of the server and mapped this to the country of origin
using MaxMind[11].

Reducing False Positives in the Infection Datasets Not all of the URLs in the com-
promise datasets are from hacked webpages. For the phishing dataset, we deem any
URL to be a false positive if the URL does anything other than impersonate another
website. For the search-redirection attacks dataset, we classify any URL as a false posi-
tive if the destination website following redirection appears related to the source website
(e.g., ilike.com redirects to myspace.com, which bought the company).

Since the false positive rates for phishing are consistently higher than for search-
redirection attacks, we developed automated techniques to discard websites that were
errantly placed on these lists. We removed all FQDNs that redirected to legitimate

Identifying Risk Factors for Webserver Compromise 7

US-based banks2 and other known non-banks frequently targeted by phishing, such as
paypal.com, amazon.com and facebook.com. We also generated a sequence
of regular expressions that detected Microsoft Outlook Web Applications and coupon
websites and checked them against the HTML we downloaded previously. These ini-
tial steps reduced our overall false positive rate for the phishing dataset from 9.4% to
5.0%. To further improve, we manually inspected all URLs in the Alexa top million
sites and excluded any false positives from further consideration, yielding final false
positive rates of 2.3% for phishing and 4.3% for search-redirection attacks. These false
positive rates were calculated by inspecting a stratified random sample by Alexa rank.

3 Empirical Results

Having detailed our methodological approach, we now turn to the results. In Section 3.1
we use odds ratios and in Section 3.2 we use logistic regression to identify which server
characteristics are associated with higher and lower rates of compromise. Then in Sec-
tion 3.3 we focus on how outdated software affects compromise in WordPress installs.

3.1 Finding Risk Factors for Compromise

Odds are defined by the ratio of the probability that an event will occur to the probability
it will not occur. For example, if p = 0.2, then the odds are p

1−p = 0.2
0.8 = 0.25.

Odds express relative probabilities. Odds ratios compare the odds of two events, each
occurring with different probabilities.

In case-control studies, odds ratios compare the odds of a subject in the case popula-
tion exhibiting a risk factor to the odds of a subject in the control population exhibiting
a risk factor. Consider the four cases:

Case (afflicted) Control (not afflicted)
Has risk factor pCaseRF pCtlRF
No risk factor pCaseRF pCtlRF
The odds ratio, then, is the following product of probabilities:

odds ratio (OR) =
pCaseRF/pCaseRF

pCtlRF/pCtlRF
=
pCaseRF ∗ pCtlRF

pCaseRF ∗ pCtlRF

An odds ratio of 1 means that there is no difference in proportions of the risk factor
among the case and control groups. An odds ratio greater than 1 indicates that those in
the case group are more likely to exhibit the risk factor (so-called positive risk factors).
By contrast, an odds ratio less than 1 indicates that those in the case group are less likely
to exhibit the risk factor (indicating a negative risk factor).

Odds Ratio Results Table 1 reports odds ratios for different CMS and server types
for both compromise datasets. We computed odds ratios for webservers running each
of the major CMSes compared to webservers not running any CMS. For the phishing

2 Found on the FDIC website [12].

8 Marie Vasek and Tyler Moore

Content Management System (CMS) Type
Risk Odds Phishing dataset Risk Odds Search-redirection attacks dataset

factor ratio 95% CI # Phish # Not phish factor ratio 95% CI # Redir. # Not redir.

No CMS 1.00 8 747 190 305 1.00 2 260 190 314
WordPress + 4.44 (4.24, 4.65) 2 673 13 101 + 17.18 (16.20, 18.22) 2 674 13 106
Joomla + 7.11 (6.62, 7.63) 1 106 3 384 + 23.96 (22.05, 26.04) 963 3 385
Drupal 0.79 (0.58, 1.04) 46 1 279 + 6.59 (5.33, 8.07) 100 1 279
Zen Cart + 4.84 (3.26, 6.96) 33 149 2.35 (0.71, 5.56) 4 149
Blogger – 0.28 (0.13, 0.52) 8 637 1.08 (0.49, 2.02) 8 637
TYPO3 – 0.14 (0.03, 0.37) 3 481 + 4.23 (2.72, 6.24) 24 481
Homestead – 0.04 (0.00, 0.18) 1 607 – 0.16 (0.01, 0.69) 1 607

Server Type
Risk Odds Phishing dataset Risk Odds Search-redirection attacks dataset

factor ratio 95% CI # Phish # Not phish factor ratio 95% CI # Redir. # Not redir.

Microsoft IIS 1.00 1 002 60 495 1.00 193 60 497
Apache + 5.44 (5.10, 5.81) 10 549 117 017 + 14.12 (12.26, 16.36) 5 276 117 031
Nginx + 2.24 (2.01, 2.50) 507 13 649 + 8.63 (7.26, 10.30) 376 13 649
Yahoo – 0.62 (0.41, 0.89) 27 2 634 1.57 (0.85, 2.64) 13 2 634
Google 0.63 (0.35, 1.03) 14 1 359 1.88 (0.84, 3.57) 8 1 359

Table 1: Odds ratios for varying CMS and server types.

dataset, some less popular CMSes fare better than not using a CMS, but the more popu-
lar CMSes are positive risk factors. WordPress, Joomla and Zen Cart had increased odds
of compromise, while Blogger, TYPO3 and Homestead reduced risk. This supports hy-
pothesis H0b, but partially refutes hypothesis H0 that using any CMS increases the odds
of compromise. For search-redirection attacks, CMSes are either as bad or worse than
not using a CMS, supporting H0. Notably, the odds ratios for Joomla and WordPress
are even higher than for phishing. The WordPress odds ratio jumps from 4.4 phishing
to 17 for search-redirection attacks; for Joomla, the jump is from 7 to nearly 24!

For some smaller CMSes, the evidence for phishing and search-redirection attacks is
mixed. Homestead has a negative risk factor for phishing and search-redirection attacks
dataset. TYPO3 and Blogger are negative for phishing, but TYPO3 has a positive risk
factor for search-redirection attacks, whereas Blogger is not statistically significant.

We note that the larger CMSes tend to be the strongest positive risk factors for
compromise, according to both datasets. This supports hypothesis H2 that CMS market
share is positively correlated with compromise, but more analysis is needed.

For server software type, we compute risk factors relative to Microsoft IIS, the
second-most popular server software. Apache and Nginx are positive for both phish-
ing and search-redirection attacks. Note that we are not making any claims about the
relative security levels of the different software classes. All software contains vulnera-
bilities, and we are not taking sides on the debate over whether open- or closed-source
software has fewer unpatched holes [13]. Instead, our results simply show that, relative
to software popularity, criminals tend to use Apache and Nginx more for perpetrating
their crimes than Microsoft IIS.

3.2 Explaining Why Compromise Rates Vary

We now present logistic regressions to study why websites are compromised. We run
four regressions in all: two for webservers running a CMS (one each for the phishing

Identifying Risk Factors for Webserver Compromise 9

and search-redirection attacks datasets) and two for webservers not running any CMS
(one for each compromise dataset). We run the additional regressions because some ex-
planatory variables only apply to CMSes, but many of the variables measuring security
signals apply regardless of whether or not a webserver uses a CMS.

We group the following explanatory variables into three categories: CMS market
share, webserver hygiene and server attributes.
CMS Market Share
Servers: We took market share for each CMS from [10] as of January 1, 2013 and
multiplied it by population of registered .com domains (106.2 million) and estimated
server response rate (85%) [5]. This variable was omitted for non-CMS regressions.
Webserver Hygiene
HTTPONLY cookie: We checked the header for an HTTPONLY cookie used to protect
against cross-site-scripting attacks. We interpret setting this cookie as a positive signal
of overall server hygiene. Checking for this cookie was one measure of server hygiene
also used in [2].
Server Version Visible: We analyzed the server headers for any version information re-
garding the server, whether it be Apache 2 or Apache 2.2.22. This is a Boolean variable
which is true if the server gave any potentially valid version information.
Shared Hosting: We counted the number of times we observed an IP address in the
combined webserver and compromised datasets. We deem a domain to be part of a
shared host if 10 domains resolve to the same IP address. A recent Anti-Phishing Work-
ing Group report presents evidence that some attackers target shared hosting in order to
simultaneously infect many domains [8].
Server Attributes
Country: We took the top ten countries from the combined dataset and compared each
of them the domains hosted in all the other countries in the dataset.
Server Type: This categorical variable looks at the type of server software a webserver
is running. We only consider the 5 most popular types: Apache, Microsoft IIS, Nginx,
Google, and Yahoo.

The model takes the following form:

log
pcomp

1− pcomp
= c0 +c1 lg (# Servers) + c2 HTTPONLY + c3 Server Vsn?

+c4 Shared Hosting? + c5 Country + c6 Server type + ε

Table 2 shows the results from these four regressions. CMS popularity is positively
correlated with compromise in the phishing dataset. Each doubling of the number of
webservers running the CMS increases the odds of compromise by 9%, supporting
hypothesis H2. The result is inconclusive for search-redirection attacks, but the trend is
similar. Also, Appendix B studies the link between market share and exploitability. The
analysis in Appendix B shows that the number of exploits is also a positive risk factor
for being hacked to serve phishing pages, which supports H2c.

We consider hygiene variables next. We do not observe any consistent evidence that
hiding server information promotes or inhibits compromise, so we can neither refute

10 Marie Vasek and Tyler Moore

CMS No CMS
Phish Search-redirection attacks Phish Search-redirection attacks

coef. odds p-value coef. odds p-value coef. odds p-value coef. odds p-value
Intercept -4.77 0.01 < 0.0001 -4.10 0.02 < 0.0001 -4.11 0.02 < 0.0001 -5.99 0.00 < 0.0001

lg # Svrs 0.09 1.09 < 0.0001 0.02 1.02 0.16
HTTPONLY 0.22 1.25 0.06 -0.83 0.44 < 0.0001 -0.87 0.42 < 0.0001 0.15 1.17 0.12
No Svr Vsn -0.15 0.86 0.0001 0.10 1.11 0.01 0.04 1.04 0.09 0.32 1.38 < 0.0001
Shared Host 0.95 2.58 < 0.0001 -1.58 0.21 < 0.0001 0.28 1.32 < 0.0001 -1.27 0.28 < 0.0001

Apache 1.49 4.45 < 0.0001 1.48 4.38 < 0.0001 1.80 6.06 < 0.0001 1.37 3.94 < 0.0001
Nginx 0.59 1.80 0.003 1.37 3.93 < 0.0001 0.70 2.00 < 0.0001 1.43 4.19 < 0.0001
Yahoo -0.34 0.72 0.59 2.72 15.12 < 0.0001 -0.54 0.58 0.009 -0.02 0.98 0.97
Google -1.50 0.22 0.0003 -0.81 0.44 0.10 -0.36 0.70 0.35 0.25 1.29 0.67
Other 1.92 6.84 < 0.0001 0.83 2.30 0.0009 0.81 2.24 < 0.0001 0.96 2.62 < 0.0001

Model fit: χ2 = 1353, p < 0.0001 χ2 = 1825, p < 0.0001 χ2 = 5937, p < 0.0001 χ2 = 2113, p < 0.0001

Table 2: Table of coefficients for logistic regressions comparing rate of compromise to
many explanatory variables.

nor support H3. Setting an HTTPONLY cookie appears to be a negative risk factor for
being compromised, but we need more data to support the associated hypothesis H5.

Running on a shared host is a positive risk factor for being hacked to serve phishing
pages, which supports H4 and findings from [8]. However, we note that it is a negative
risk factor for being hacked for search-redirection attacks. It appears that cybercriminals
engaged in phishing have adopted different techniques for infecting webservers than
those carrying out search-redirection attacks. Further investigation shows that there is
a correlation between being on a shared host and having a low or no Alexa rank: 13%
of the top 10M, 26% of the next 10M, and 55% of websites without an Alexa rank are
hosted on a shared host (from our combined webserver and search-redirection attacks
dataset). This result could signal that search-redirection attacks attackers target higher
ranked pages, which makes sense in light of [1], which showed that compromised web-
sites with a higher PageRank stay in search results longer.

Previous results from webservers in Section 3.1 are similar to those in this regres-
sion – notably that Apache and Nginx webservers remain positive risk factors compared
to Microsoft IIS in all cases.

Finally, we note that there is more consistency between the regressions examin-
ing CMSes and no CMSes than there is between regressions for phishing and search-
redirection attacks. The results for the shared host variable are the same, regardless of
whether a CMS is used, as are the results for server types and most countries. Only
the practice of hiding detailed server version information was very inconsistent, being
a negative risk factor for phishing on CMSes and a negative risk factor for search-
redirection attacks when no CMS is used.

3.3 Does Outdated Software Get Hacked More?

A best practice for webserver security is to run the most recent version of software avail-
able, as updates tends to plug security holes as well as add new features. For instance,
Google notifies webmasters via its Webmaster Tools when it detects outdated server
software as a way to improve security[14]. However, updating server software can be
a nuisance, due to cross-dependencies, poor interfaces and the demands of maintain-

Identifying Risk Factors for Webserver Compromise 11

ing uptime. Consequently, many webservers run software that is many months, or even
years, out of date. The security firm Sucuri Labs even runs a website[15] that names
and shames websites running woefully outdated CMS or server software.

But we wondered whether or not servers running outdated software actually do get
compromised more often than those that do not. We hypothesize that the opposite is
usually true: that outdated webservers are compromised less often provided that most
other webservers are already upgraded. To test this and related hypotheses, we restrict
ourselves to the servers running WordPress. This is for two reasons: WordPress is the
most popular content management system and, by default, WordPress installs provide
detailed version information ordered straightforwardly.

Odds Ratios for Major Version Differences First, we investigated whether servers
running WordPress that hid version information were at less risk of compromise (to test
hypothesis H3). The results are shown in the first row of the table in Figure 2c. In fact,
hiding WordPress version is a positive risk factor for being hacked for phishing pages.
This contradicts the frequently held view that hiding detailed version information im-
proves security, and it instead lends credence to the view that publishing information
helps defenders more than attackers. For instance, WordPress and Google send out re-
minder emails to server administrators to update their software, but those who obscured
their generator version for security reasons do not receive the reminders. We also note
that even though we looked at version information through the generator tag, attackers
oftentimes try their hack on any server running WordPress, regardless of what version it
says it is. We see no statistically significant effect for search-redirection attacks, though
the trend is similar.

There are differing degrees of outdated software. For servers with version informa-
tion, we first compared the risk facing servers at the most recent version (3.5.1 during
our collection time) to running any other version of WordPress. Running the most up-
to-date version is a positive risk factor for being hacked for search-redirection attacks.
This too goes against conventional wisdom, and indirectly supports hypothesis H2 since
the most recent version is also the most popular one.

We also looked at the difference in major versions, ignoring version 1 since we only
had 7 instances in our combined datasets. We compared all of WordPress 2.* and Word-
Press 3.* against WordPress installs with no version information. We see that WordPress
3.* installs face more risk of being hacked to serve phishing pages than WordPress 2.*.
We observe similar but statistically insignificant results for search-redirection attacks.

Chi-squared Test for Risk Across Subversions The odds ratios just discussed of-
fer initial evidence that being out of date reduces the risk of infection for webservers
running WordPress, at least when comparing major versions. We now drill down and
investigate differences across WordPress subversions (e.g., WordPress 3.3.*). Figure 2a
plots the relative frequency of servers in our webserver and compromise datasets run-
ning each WordPress subversion. Note the different scales to the vertical axes – the left
axis tracks the frequency in the webserver dataset while the right axis is used for the
two compromise datasets. We first observe that more outdated subversions are indeed
less popular compared to the most recent subversions. We also see that the compromise

12 Marie Vasek and Tyler Moore

● ● ● ● ● ● ●
●

●

● ●
●

●

●

●

0
10

00
20

00
30

00
40

00

WordPress Subversion

W
eb

se
rv

er
 D

at
as

et
 F

re
qu

en
cy

2.
0

2.
1

2.
2

2.
3

2.
5

2.
6

2.
7

2.
8

2.
9

3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

0
20

0
40

0
60

0
80

0

C
om

pr
om

is
e

F
re

qu
en

cy

● Webserver Dataset
Phish
Search Redirection

(a) Incidence of compromise by Word-
Press version, along with the popularity
of WordPress version.

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

−
4

−
4:

−
2

−
2:

0
0:

2
2:

4
>

4

2.
0

2.
1

2.
2

2.
3

2.
5

2.
6

2.
7

2.
8

2.
9

3.
0

3.
1

3.
2

3.
3

3.
4

3.
5

 .
 C
om

pr
om

is
ed

N

ot
 C

om
pr

om
is

ed

(b) Mosaic plot of WordPress version
popularity and incidence of compro-
mise (red cells indicate statistically sig-
nificant underrepresentation, blue cells
overrepresentation).

Risk Odds Phishing dataset Risk Odds Search-redirection attacks dataset
factor ratio 95% CI # Phish # Not phish factor ratio 95% CI # Redir. # Not redir.

Version Found 1.00 1 834 9 676 1.00 1 936 9 680
No Version + 1.29 (1.18, 1.41) 839 3425 1.08 (0.98, 1.18) 738 3 426

Other WordPress versions 1.00 1 606 8 599 1.00 1 440 8 601
WordPress 3.5.1 1.13 (0.97, 1.32) 228 1 077 + 2.75 (2.43, 3.09) 496 1 079

No Version 1.00 839 3 425 1.00 738 3 426
WordPress 2.* – 0.12 (0.08, 0.17) 26 918 0.88 (0.73, 1.05) 173 918
WordPress 3.* – 0.84 (0.77, 0.92) 1 808 8 751 0.93 (0.85, 1.03) 1 762 8 755

(c) Odds ratios by WordPress versioning.

Fig. 2: Exploring the relationship between WordPress version and the incidence of web-
server compromise.

rate roughly follows the popularity of the subversion, but with substantial variation and
lower compromise rates for more outdated versions.

But are the differences in compromise rates statistically significant? We can an-
swer that using a χ2 test, but first, we can inspect the differences visually using the
mosaic plot in Figure 2b. The vertical axis shows for each version the proportion of
compromised webservers (either phishing or search-redirection attacks) compared to
the proportion of uncompromised webservers (from the webserver dataset). The hori-
zontal axis is scaled so that the area of each cell matches the frequency of each category.
For instance, the dark blue cell in the bottom right corner shows the proportion of web-
servers running WordPress Version 3.5.* that have been compromised. This plot shows
that the fraction compromised falls steadily as the subversions grow more outdated. It
also shows that the collective proportion of outdated servers is still quite substantial.

Finally, the cells are lightly shaded if the difference in proportion for being compro-
mised is statistically significant at the 95% confidence interval according to the χ2 test,
and over 99% confidence interval if darkly shaded. Red cells are underrepresented and
blue cells are overrepresented. We can see that most of the WordPress 2.* versions are
statistically overrepresented in the webserver dataset and underrepresented in the com-
promise datasets. WordPress 3.0 and 3.3 are also overrepresented in the compromise

Identifying Risk Factors for Webserver Compromise 13

datasets and underrepresented in the webserver dataset. The most recent, WordPress
3.5, is the only subversion overrepresented in the phish dataset and underrepresented in
the webserver dataset. These findings support hypothesis H2b that unpopular outdated
CMSes are negative risk factors for compromise. It is also consistent with our findings
from the odds ratios that the most recent version is the most at risk of compromise.

Logistic Regressions The final check we make comparing compromise rates in Word-
Press versions is to run a simple logistic regression comparing the popularity of a ver-
sion to the compromise rate in the phishing dataset.
Servers: We took the market share for each WordPress subversion from [10] as of
January 1, 2013 and multiplied it by population of registered .COM domains (106.2
million) and the estimated server response rate (85%) from [5].

log
pcomp

1− pcomp
= c0 + c1 lg (# Servers) + ε.

The logistic regression yields the following results:

coef. Odds Ratio 95% conf. int. Significance
Intercept -5.60 0.00 (0.00, 0.01) p < 0.0001
lg(# Servers) 0.19 1.20 (1.17, 1.24) p < 0.0001

Model fit: χ2 = 200.31, p < 0.0001

These results show that each time the number of servers running the same subver-
sion of WordPress doubles, the risk of the server being hacked to serve phishing pages
increases by 20%. This offers further evidence supporting H2.

4 Discussion

We now sum up the results of the prior sections by first revisiting the original hypotheses
and second discussing how the results can be leveraged by security engineers.

Evaluating Research Questions We summarize the analysis of the previous section by
returning to the original research questions.

H0 (Running a CMS pos. RF) Supported for search-redirection attacks, not uniformly
for phishing

H0b (Some CMS types are RFs) Broadly supported
H1 (Some server types are RFs) Broadly supported
H2 (CMS market share pos. RF) Broadly supported, across all CMSes and across

WordPress subversions
H2b (Outdated unpopular software neg. RF) Supported across WordPress subversions
H2c (# exploits pos. RF) Supported
H3 (Hiding version info neg. RF) Contradicted
H4 (Shared hosting pos. RF) Supported for phishing, contradicted for search-

redirection attacks

14 Marie Vasek and Tyler Moore

H5 (HTTPONLY cookie pos. RF) Inconclusive

Many hypotheses are broadly supported, especially that server type and CMS mar-
ket share are positive risk factors. We find less support for hypothesis H0 that all CMSes
exhibit higher rates of compromise; instead, most CMSes, especially the popular ones,
are positive risk factors for compromise. Finally, it does not appear that hiding version
information is a negative risk factor in most circumstances, but it is unclear how often
it may be a positive risk factor.

Making the Results Actionable So what can be made of these results? At a high level,
the findings can help reduce information asymmetries regarding security outcomes for
different webserver configurations [16]. By making security outcomes such as compro-
mise incidents more directly comparable across platforms, we can help others make
more informed decisions about the relative risks posed. Publishing such data can also
motivate software developers to improve the security of their code.

We have seen, however, that not all “name-and-shame” policies are consistent with
empirical observation. Notably, efforts to call out websites running outdated software
are misguided, since they obscure our finding that up-to-date servers tends to be hacked
more often. Instead, relative metrics such as odds ratios can be used to identify the
worst offenders and apply peer pressure to improve. They can also be used as positive
reinforcement by encouraging everyone to improve compared to others.

For the system administrator, our results can be applied in two ways. First, the re-
sults can be used to make better choices when choosing among available software types
and configuration. Second, after systems have been deployed, the findings can be used
to manage heterogeneous configurations (e.g., environments with multiple CMSes and
server software types). Here, administrators can prioritize how defensive countermea-
sures such as attack detection should be deployed. Security policies could even be set
in accordance with the observed relative risk.

More broadly, we have demonstrated a general method of studying how webserver
characteristics affect the risk of compromise. The methods presented here can be ap-
plied to other characteristics if the the data can be collected. Furthermore, odds ratios
help to identify relationships that should be tested further using experimental methods.

5 Related Work

While often challenging to carry out, substantial progress has been made over the past
several years in conducting large-scale measurements of cybercrime. Some work is
particularly relevant due to the results from studying the security of webservers. For in-
stance, Doupe et al. describe a state-aware fuzzer in which they evaluate vulnerabilities
in CMS platforms [17]. Scholte et al. study vulnerabilities in CMS platforms, though
they do not relate vulnerabilities to exploits or observed compromise [18]. Nikiforakis
et al. crawl many webpages on top webservers to measure the quality of third-party
JavaScript libraries running on the webservers [2].

Another series of papers are relevant to the compromise datasets we study. For ex-
ample, Wang et al. performed a large-scale study of cloaking, which is often caused

Identifying Risk Factors for Webserver Compromise 15

by search-redirection attacks [19]. Notably, the authors dealt with false positives using
clustering. While our data source on search-redirection attacks focuses exclusively on
redirections to unlicensed pharmacies [1], the attack technique is general [20].

A number of studies deploy methods in common with our own. Notably, Lee de-
scribes the use of a small case-control study to identify characteristics that predispose
academics to spear-phishing attempts [21]. We adopt one of the signals of security hy-
giene used by [2], while Pitsillidis et al. measure the purity of spam feeds in a manner
consistent with how we detect false positives in our compromise datasets [22].

Many studies have been primarily descriptive in nature, though some have managed
to tease out the factors affecting the prevalence and success of attacks. For instance,
Ransbotham connected vulnerability information with intrusion detection system data
to show that open-source software tends to be exploited faster than closed-source soft-
ware following vulnerability disclosure [23].

Our work is distinguished from prior work in two ways. First, we focus extensively
on the relationship between webserver characteristics, notably CMS type and market
share, and compromise. Second, we use the case-control method to understand the char-
acteristics of large cybercrime datasets.

6 Concluding Remarks

We have presented a case-control study identifying several webserver characteristics
that are associated with higher and lower rates of compromise. We joined two datasets
on phishing and search-redirection attacks with a large sample of webservers, then au-
tomatically extracted several characteristics of these webservers hypothesized to affect
the likelihood the webserver will be compromised.

Supported by statistical methods of odds ratios and logistic regression models, we
found that certain server types (notably Apache and Nginx) and content management
systems (notably Joomla and WordPress) face higher odds of compromise, relative to
their popularity. We also found that a key driving factor behind which CMSes are tar-
geted most is the underlying popularity of the platform. We presented evidence that
this was true across CMS types, as well as for less popular but outdated subversions
of WordPress. In many respects, this finding can be thought of as a webserver-based
corollary to the old truism for desktop operating systems that Macs are more secure
than PCs because they have less market share.

There are a number of limitations to the present study that can be addressed in future
work. First, the findings of case-control studies should be complemented by other forms
of experimentation that directly isolate explanatory factors when possible. It is our hope
that our findings may be further validated using different approaches.

Another limitation of the current study is that there is a delay between the time of
reported compromise and the identification of risk factors. It is possible that some of
the webservers may have changed their configurations before all indicators could be
gathered. There is a trade-off between collecting large data samples and the speed at
which the samples can be collected. In this paper, we emphasized size over speed. In
future work, we aim to close the gap between compromise and inspection to improve
the accuracy of our CMS and software classifications.

16 Marie Vasek and Tyler Moore

Other opportunities for further investigation include carrying out a longitudinal
study of these risk factors over time. Incorporating additional sources of compromise
data, notably servers infected with drive-by-downloads, could be worthwhile. We would
like to construct a control sample for domains other than .com, since others have shown
that different TLDs such as .edu are frequently targeted [1].

Finally, we are optimistic that the case-control method employed here may be ap-
plied to many other contexts of cybercrime measurement. It is our hope that doing so
will lead to deeper understanding of the issues defenders should prioritize.

Acknowledgments

This work was partially funded by the Department of Homeland Security (DHS) Sci-
ence and Technology Directorate, Cyber Security Division (DHS S&T/CSD) Broad
Agency Announcement 11.02, the Government of Australia and SPAWAR Systems
Center Pacific via contract number N66001-13-C-0131. This paper represents the posi-
tion of the authors and not that of the aforementioned agencies.

References

1. N. Leontiadis, T. Moore, and N. Christin, “Measuring and analyzing search-redirection at-
tacks in the illicit online prescription drug trade,” in Proceedings of USENIX Security 2011,
San Francisco, CA, Aug. 2011.

2. N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “You are what you include: Large-scale evaluation of remote JavaScript inclu-
sions,” in ACM Conference on Computer and Communications Security, 2012, pp. 736–747.

3. J. Schlesselman, Case-control studies: design, conduct, analysis. Oxford University Press,
USA, 1982, no. 2.

4. R. Doll and A. Hill, “Lung cancer and other cuases of death in relation to smoking; a second
report on the mortality of british doctors,” British Medical Journal, vol. 2, pp. 1071–1081,
Nov. 1956.

5. Verisign, “The domain name industry brief,” Apr. 2013, https://www.verisigninc.com/assets/
domain-name-brief-april2013.pdf. Last accessed May 1, 2013.

6. “PhishTank,” https://www.phishtank.com/.
7. “Anti-Phishing Working Group,” http://www.antiphishing.org/.
8. APWG, “Global phishing survey: Trends and domain name use in 2H2012,” 2013, http:

//docs.apwg.org/reports/APWG GlobalPhishingSurvey 2H2012.pdf. Last accessed May 5,
2013.

9. N. Leontiadis, T. Moore, and N. Christin, “Pick your poison: pricing and inventories at unli-
censed online pharmacies,” in ACM Conference on Electronic Commerce, 2013.

10. W3techs, “Market share trends for content management systems,” http://w3techs.com/
technologies/history overview/content management/. Last accessed May 3, 2013.

11. “MaxMind GeoIP,” https://www.maxmind.com/en/geolocation landing.
12. “FDIC institutions,” http://www2.fdic.gov/idasp/Institutions2.zip.
13. J.-H. Hoepman and B. Jacobs, “Increased security through open source,” Communications

of the ACM, vol. 50, no. 1, pp. 79–83, 2007.
14. P. Chapman, “‘New software version’ notifications for your site,” http:

//googlewebmastercentral.blogspot.com/2009/11/new-software-version-notifications-for.
html.

Identifying Risk Factors for Webserver Compromise 17

15. “URLFind,” http://urlfind.org/.
16. R. Anderson and T. Moore, “The economics of information security,” Science, vol. 314, no.

5799, pp. 610–613, Oct. 2006.
17. A. Doupe, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the State: A State-Aware Black-

Box Vulnerability Scanner,” in Proceedings of the USENIX Security Symposium, Bellevue,
WA, August 2012.

18. T.Scholte, D. Balzarotti, and E. Kirda, “Quo vadis? A study of the evolution of input val-
idation vulnerabilities in web applications,” in Financial Cryptography and Data Security.
Springer, 2012, pp. 284–298.

19. D. Wang, S. Savage, and G. Voelker, “Cloak and dagger: Dynamics of web search cloaking,”
in Proceedings of the 18th ACM Conference on Computer and Communications Security.
ACM, 2011, pp. 477–490.

20. Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang, “Finding the linchpins of the dark web: A study
on topologically dedicated hosts on malicious web infrastructures,” in 34th IEEE Symposium
on Security and Privacy, 2013.

21. M. Lee, “Who’s next? identifying risks factors for subjects of targeted attacks,” in Proceed-
ings of the Virus Bulletin Conference, 2012, pp. 301–306.

22. A. Pitsillidis, C. Kanich, G. Voelker, K. Levchenko, and S. Savage, “Taster’s choice: A com-
parative analysis of spam feeds,” in ACM SIGCOMM Conference on Internet Measurement,
2012, pp. 427–440.

23. S. Ransbotham, “An empirical analysis of exploitation attempts based on vulnerabilities in
open source software,” in Proceedings (online) of the 9th Workshop on Economics of Infor-
mation Security, Cambridge, MA, Jun. 2010.

24. “BlindElephant web application fingerprinter,” http://blindelephant.sourceforge.net/.
25. “WhatWeb,” http://whatweb.net/.
26. “Plecost,” https://code.google.com/p/plecost/.
27. “Exploit database,” http://www.exploit-db.com.

A Comparison of Methods to Identify CMS Type

While a number of tools provide CMS detection as part of more general-purpose
web-service fingerprinters (e.g., BlindElephant[24], WhatWeb[25] and the WordPress-
specific Plecost[26]), we opted to build the custom CMS detector described above to
improve efficiency and accuracy over existing tools. Both BlindElephant and Plecost
issue many HTTP requests to characterize each server. We ruled these tools out because
we needed a lightweight solution that could quickly detect CMS type and version for
hundreds of thousand webservers. Like our method, WhatWeb issues a single HTTP re-
quest per server (at its lowest “aggressiveness” level). Combined with its multi-threaded
design, WhatWeb should offer fast identification of CMS versions. We therefore de-
cided to evaluate its performance and accuracy compared to our own system.

We selected 2 000 random URLs from the webserver dataset and attempted to iden-
tify the CMS type using our system and WhatWeb’s. In terms of efficiency, we were
surprised to find that WhatWeb took nearly twice as long to finish, despite being mul-
tithreaded. We speculate that the difference in speed can be attributed to its general-
purpose nature. We also found that our system was substantially more accurate, identi-
fying the correct CMS on more websites and having far fewer inaccurate classifications.
We manually inspected all disagreements between WhatWeb and our tool in order to
establish the following detection, false positive and false negative rates:

18 Marie Vasek and Tyler Moore

Method FN Rate FP Rate TN Rate TP Rate # Results

WhatWeb 40.7% 6.1% 74.3% 59.3% 1 297
Our Method 5.4% 0.1% 99.0% 92.2% 1 674

Based on these findings, we conclude that our custom method is best-suited to the
task of identifying CMS type.

B Does CMS Popularity Affect Exploitability?

Results from the Subsection 3.1 showed that the some of the most popular CMS plat-
forms, notably WordPress and Joomla, are compromised disproportionately often. We
now dig a bit deeper to see if there is a statistically robust connection between CMS
popularity and compromise. Before inspecting the compromise rates directly, we first
compare CMS popularity to the number of readily-available exploits targeting the CMS
platform.

For this analysis, we considered many more CMSes than in other sections. We con-
sider all 52 CMS platforms tracked in [10]. These additional CMSes all have very small
market shares, and so not enough registered in our datasets to include in the other anal-
ysis. For each CMS we collected the following two indicators:
Servers: We took the market share for each CMS from [10] as of January 1, 2013
and multiplied it by population of registered .com domains (106.2 million) and the
estimated server response rate (85%) from [5].
Exploits: The Exploit Database [27] is a search engine that curates working and proof-
of-concept exploits from a variety of sources, including the popular penetration-testing
tool Metasploit. We searched the Exploit Database for each CMS and recorded the
number of hits as a measure of how “exploitable” each CMS is. We discarded any results
not matching the searched-for CMS. We deem this to be a more accurate measure of
attacker interest in and the “hackability” of a content management system than would be
counting the vulnerabilities reported for a CMS. Unlikely many vulnerabilities, exploits
provide directly actionable information to compromise machines.

We hypothesize that the number of exploits available for a CMS depends directly
on the number of servers in use. Because both variables are highly skewed, we apply a
log transformation to each. Here is the statement of the linear regression:

lg (# Exploits) = c0 + c1 lg (# Servers) + ε.

The regression yields the following results:

coef. 95% conf. int. Significance
Intercept -8.53 (-3.37, -13.69) p = 0.002
lg(# Servers) 0.64 (0.33, 0.95) p = 0.0001

Model fit: R2 = 0.23

Indeed, this simple linear model has a reasonably good fit. While there is additional
unexplained variation, this lends indirect support to H2. Due to the collinearity of these
variables, we only use one of them (# Servers) in our regressions in this paper.

